Conoce Aseuc

a Course of Plane Geometry

U. EAFIT
Mira otros U. EAFIT articulos

libro

Más vistas

a Course of Plane Geometry

U. EAFIT
Mira otros U. EAFIT articulos

COP $ 50.000
COP $ 50.000

Disponibilidad: Disponible


Autor: Carlos Alberto Cadavid Moreno

Editorial: U. EAFIT

U. EAFIT

Año de Edición: 2019

2019

Idioma: Español

Formato: Libro Impreso

Número de páginas: 330

ISBN: 9789587206104

9789587206104
This book presents plane geometry following Hilbert\'s axiomatic system. It is inspired on R. Hartshome\'s fantastic book Geometry: Euclid and  Beyond, and can be considered as a careful exposition of most of chapter II of that book.  It must be remarked that non-euclidean geometries, i.e. geomet...
O BIEN

SKU: 363624

Producto creado el 30/12/2019

Descripción

Detalles

This book presents plane geometry following Hilbert\'s axiomatic system. It is inspired on R. Hartshome\'s fantastic book Geometry: Euclid and  Beyond, and can be considered as a careful exposition of most of chapter II of that book. 
 
It must be remarked that non-euclidean geometries, i.e. geometries not satisfying the fifth postulate of Euclid, enter the scene, in a natural way, from the very beginning. 
 
The vast majority of plane geometry texts are only concerned with euclidean geometry, loosing the oportunity of not only teaching rigorous reasoning to freshmen, but at the same time exposing them to the mind expanding experience of contemplating the strange geometries conceived, in the first decades of the XIX century, by Gauss, Lobachevsky and Bolyai. 
Información adicional

Información adicional

Editor / MarcaU. EAFIT
Editor
FacultadEscuela de Ciencias
Año de Edición2019
Número de Páginas330
Idioma(s)Español
TerminadoTapa Rústica
Alto y ancho16.5 x 24 cm
Peso0.5300
Tipo Productolibro
ColecciónColección Académica
PDF URL
Autor

Carlos Alberto Cadavid Moreno

información no disponible.

Tabla de Contenido


Contents 
Preface 

Acknowledgments 

1 Introduction 
1.1 A Short History of Geometry
1.2 What you will and will not learn in this book 
1.3 Audience prerequisites and style of explanation
1.4 Book plan 
1.5 How to study this book  

2 Preliminaries 
2.1 Proof methods  
2.1.1 Methods for proving conditional statements 
2.1.2 Methods for proving other types of statements 
2.1.3 Symbolic representation 
2.1.4 More examples of proofs 
2.1.5 Exercises
2.2 Elementary theory of sets 
2.2.1 Set operations 
2.2.2 Relations 
2.2.3 Equivalence relations
 

3 Incidence geometry 
3.1 The notion of incidence geometry 
3.2 Lines and collinearity  
3.3 Examples of incidence geometries 
3.3.1 Some basic examples of incidence geometries 
3.3.2 The main incidence geometries 
3.3.3 Generalizing the real cartesian plane  
3.4 Parallelism
3.5 Behavior of parallelism in our examples 

4 Betweenness 
4.1 Betweenness structures, segments, triangles, and convexity  
4.2 Separation of the plane by a line 
4.3 Separation of a line by one of its points 
4.4 Rays 
4.5 Angles 
4.6 Betweenness structure for the real cartesian plane 
4.7 Betweenness structure for the hyperbolic plane  

5 Congruence of segments 
5.1 Congruence of segments structure and segment comparison  
5.2 The usual congruence of segments structure for the real cartesian plane
5.3 The usual congruence of segments structure for the hyperbolic plane  
 
6 Congruence of angles 
6.1 Congruence of angles structure and angle comparison 
6.2 Angle congruence in our main examples
6.2.1 Congruence of angles in the real cartesian plane 
6.2.2 Congruence of angles in the hyperbolic plane  

7 Hilbert planes 
7.1 Circ1es 
7.2 Book 1 of The Elements 

References 

Index 




Reseñas